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Abstract

Purpose — Portfolio theory suggests that geographical diversification of production units could
potentially help manage the risks associated with farming, yet little research has been done to evaluate
the effectiveness of a geographical diversification strategy in agriculture. The paper aims to discuss
this issue.

Design/methodology/approach — The paper utilizes several tools from modern finance theory,
including Conditional Value-at-Risk (CVaR) and copulas, to construct a model for the evaluation of a
diversification strategy. The proposed model — the copula-based mean-CVaR model — is then applied to
the producer’s acreage allocation problem to examine the potential benefits of risk reduction from a
geographical diversification strategy in US wheat farming. Along with the copula-based model, the
multivariate-normal mean-CVaR model is also estimated as a benchmark.

Findings — The mean-CVaR optimization results suggest that geographical diversification is
a viable risk management strategy from a farm’s profit margin perspective. In addition, the
copula-based model appears more appropriate than the traditional multivariate-normal model for
conservative agricultural producers who are concerned with the extreme losses of farm profitability in
that the later model tends to underestimate the minimum level of risk faced by the producers for a given
level of profitability.

Originality/value — The effectiveness of geographical diversification in US wheat farming is evaluated.
As a methodological contribution, the copula approach is used to model the joint distribution of profit
margins and CVaR is employed as a measure of downside risk.

Keywords Agriculture, Copulas, Portfolio theory, Conditional Value-at-Risk,

Geographical diversification

Paper type Research paper

1. Introduction and background

An agricultural producer faces many types of risk, including fluctuations in yields and
prices. Moreover, a changing set of government policies can cause wide swings in farm
profitability (ie. the ability of a farm to generate profit). Due to different soil types,
different weather variables (temperature, rainfall, etc.), and many other factors, the
profitability of farming varies across states and regions over time (Nartea and Barry,
1994; Krueger et al., 2002; Blank et al., 2005). Through less-than-unit correlations among
regional profitability, portfolio theory suggests that geographical diversification of
production units could potentially help manage the risks associated with farming.
In fact, some farms have already begun to diversify geographically (Nartea and Barry,
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1994). Little is known, however, about the effectiveness of a geographical diversification
strategy in agriculture.

Previous studies of geographical diversification have produced somewhat
contradictory results. For example, Nartea and Barry (1994) analyzed the costs and
returns of geographical diversification in Central Illinois to determine whether geographical
diversification was a legitimate risk management strategy for individual grain growers.
By comparing the increases in revenues received with increases in transportation and
monitoring costs and losses due to poor machinery coordination, the author concluded
that there was no realizable gain from diversifying geographically in Central Illinois.
Davis et al (1997), on the other hand, examined the impact of geographical diversification
on peach orchards in Georgia. They argued that weather related production risks in
peach orchards could be reduced through spatial scattering. In particular, using a
stochastic production function, the authors determined the variability of yield that could
be reduced by geographically scattering peach orchards. They found that for every mile
increase in the distance between orchards, a correlation between yields dropped by
2 percent. They then concluded that implementing geographical diversification was a
legitimate risk reduction strategy and that geographical diversification could also
enhance the long-term sustainability of peach production. Later, Krueger et al (2002)
analyzed the effects of an international geographical diversification strategy on a
producer’s profit margin. Their analysis was applied to the California-Chile table grape
industry. The results from a firm-level simulation model showed that geographical
diversification could be profitable for a US table grape producer. Further, Oglend and
Tveteras (2009) evaluated the effectiveness of spatial diversification in Norwegian salmon
aquaculture. Using the standard Markowitz's (1952) mean-variance portfolio analysis,
they found that geographical diversification could significantly reduce variations in the
rate of returns. They thus concluded that geographical diversification was a viable risk
management strategy in salmon farming.

This paper adds to the scarce literature on geographical diversification in agriculture
by examining the effectiveness of a geographical diversification strategy in wheat
production in three separate locations: Smith County, Kansas; Bottineau County, North
Dakota; and Dumas in Moore County, Texas. The three locations are chosen based on
harvesting windows and distance criteria. Texas and Kansas are winter wheat production
regions while North Dakota is a spring wheat production region. The typical planting and
harvesting sequence would begin in Texas and end in North Dakota. In theory, this would
allow a producer to use the same machinery set in all three regions. Similar to Oglend and
Tveteras (2009), the paper applies portfolio theory to production allocation decisions to
find profit maximizing (or risk minimizing) outcomes and to evaluate the effectiveness of a
geographical diversification strategy. However, instead of using variance (or, equivalently,
standard deviation) as a risk measure, this paper employs one of the recent most popular
risk metrics in financial literature — Conditional Value-at-Risk (CVaR), which is a downside
risk measure. The application of CVaR as a risk measure addresses two major drawbacks
of the traditional mean-variance optimization approach. First, when variance is used as
the risk measure, all risk is treated the same (ie. upside risk is penalized the same as
downside risk). This symmetric view of uncertainty is counter-intuitive because upside
risk is often considered to be the riskless opportunities for unexpected high returns
(Alexander and Baptista, 2004). Because individuals, as well as agricultural producers, are
generally concerned only with the downside risk, CVaR is used as a measure of downside
risk in this study. Second, variance is a valid risk measure only when asset returns in the
portfolio are normally distributed (Szego, 2005). However, in reality asset returns, as well
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as agricultural prices and yields, have been shown to be non-normal (Goodwin and Ker,
2002; Ramirez et al, 2003; Sun et al., 2009). Thus, CVaR has an advantage over variance in
that it does not rely on the assumption of multivariate normality. This study, therefore,
adopts the mean-CVaR framework in analyzing potential benefits from geographical
diversification. Another popular downside risk measure, Value-at-Risk (VaR), is not
chosen because VaR has been found to be a less consistent measure of downside risk than
CVaR (Artzner et al,, 1999; Rockafellar and Uryasev, 2000; Alexander and Baptista, 2004).

Specifically, the study develops a portfolio of wheat production locations that maximizes
farm profitability (measured by a profit margin from production) for a given level of
CVaR. The mean-CVaR framework requires knowledge of the joint distribution of
profit margins in the calculation of CVaR. Traditional approach relies on the use of a
multivariate normal distribution, under which the dependence among the profit margins
is assumed to be symmetric and captured by linear correlation. Instead of restricting our
attention to the traditional multivariate normal assumption, this study employs the
copula-based Monte Carlo simulation method to calculate CVaR. The copula-based
method provides more flexibility in modeling the dependence between profit margins
generated at different production locations in that it allows us to model the marginal
distributions and their dependence structure separately. In addition, the copula function
can capture non-linear dependence and thus provides a more accurate picture of the
relationship among farm profitability in different locations.

Within this context, the aim of this paper is to examine the potential benefits of a
downside risk reduction from a geographical diversification strategy in agriculture.
Our investigation adds to the work of earlier studies in three important ways. First, to
the best of our knowledge, the effectiveness of farm-level geographical diversification
in wheat farming has not been investigated or reported in the literature. Second, the
paper combines CVaR (the popular risk management criterion) and copulas (a mathematical
tool used in finance to model a dependence structure of asset returns) to construct a model
for the evaluation of a diversification strategy. This allows us to construct a portfolio
of production locations and to evaluate trade-offs in profitability and downside risk
without restricting to any specific distribution assumptions. Finally, the study compares
the optimization results from the copula-based mean-CVaR model with those from the
multivariate-normal mean-CVaR model. The comparison then allows us to observe
the effects of relying on the standard assumption of multivariate normality in terms of
portfolio optimization results.

The remainder of the paper is organized as followed. Section 2 outlines the model and
method. Section 3 is devoted to describing the data. Section 4 presents and discusses the
results of copula selection, mean-CVaR optimization, and optimal portfolio allocation.
Finally, Section 5 summarizes and concludes.

2. Model and method

In this section, we first present a model for evaluating geographical diversification.
Our model is built on the portfolio theory developed by Markowitz (1952) and the CVaR
measure. We then discuss the method used to calculate CVaR.

2.1 Model

To evaluate the effects of geographical diversification, we assume that a producer may
operate in more than one location, and that his objective is to choose the optimal share
of total acres allocated to each production locations. Let w; be the number of acres
allocated to a production location 7, where =1, ], and W be the total acres dedicated



to wheat production. Given z possible choices of growing location, a share of total acres
allocated to production location i, a;=w;/W, is chosen such that ;' ;o =1 Asa
measure of farm profitability, we use the profit margin from production. The profit
margin measures the percentage by which a farm’s total revenue exceeds its total
expenses. The profit margin from location ¢’s production can be stated as:

_ bywi—ciwi _ pyi—¢i
pyiw; D

where p;, y;, and ¢; are the location 7’s price per bushel of wheat, yield of wheat per acre,

and cost of production per acre of wheat, respectively. Further, it is assumed that the

producer’s optimal location decision will depend upon the weighted-average profit
margin (expected profit margin), which can then be calculated as:

n
p = Z oL Tt (2)
=1

To calculate the optimal resource allocation, an appropriate risk measure must be chosen.
The Markowitz's (1952) mean-variance optimization framework uses a standard
deviation of the portfolio’s return as a risk measure. However, the standard deviation is
not an appropriate measure of downside risk, as it punishes both upside and downside
deviations equally. An alternative measure of downside risk is VaR. VaR determines the
amount of potential loss in a portfolio value (in this case, the weighted-average profit
margin) over a given period of time for a particular confidence level. For example, if a
farm has a one-year 95 percent VaR of 0.15, there is a 5 percent chance that its profit
margin will drop to less than —0.15 (or —15 percent) within any given year. VaR is
formally defined as:

@

T

VaRy(Y) = —min[y|Pr(Y <) > f] @)

where Pr is a probability distribution, 4 is a given confidence level, and Y is the expected
profit margin over a given time horizon. The advantages of VaR are its simplicity and
mntuitive interpretation. In addition, VaR only penalizes downside risk, and thus addresses
the major drawback of the mean-variance optimization approach. Nevertheless, recent
research has shown that VaR does not possess the subadditivity property, one of the
properties that a risk measure should have (Artzner et al, 1999; Acerbi, 2007).
A particularly troubling implication for portfolio optimization is that the VaR of a
portfolio of two securities may be greater than that of each individual security,
suggesting that diversification should be discouraged (Alexander and Baptista,
2004). Furthermore, VaR is also shown to lead to erroneous results when the data are
not normally distributed (Stoica, 2006).

CVaR, introduced by Rockafellar and Uryasev (2000), has been gaining popularity
as an alternative to VaR. Similar to VaR, CVaR does not penalize upside gains. CVaR
measures the expected loss given that the loss is greater than or equal to VaR (i.e. the
average of all losses in the worst (1—f)% cases, where § is a confidence level).
It satisfies the four properties of a coherent risk measure: translation invariance,
subadditivity, positive homogeneity, and monotonicity. These are the properties that
risk measures should have (Artzner et al,, 1999). Moreover, CVaR has been found to be a
more consistent measure of risk than VaR and generally resulted in more efficient
portfolio choices (Rockafellar and Uryasev, 2000; Alexander and Baptista, 2004).
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In addition, CVaR is a more appropriate measure than variance because it does not
assume normality of distributions of returns of assets. We therefore use CVaR as a
measure of risk in this study. Mathematically, CVaR is defined as:

CVaRy(Y) = —E[Y| Y < —VaR,;(Y)] 4)
Given the return and risk measures, the producer’s portfolio optimization problem can

be expressed as:
max mp = Z o = Z o; <‘bLyZ Cl) ®)
& i1 i1 by

subject to:
CVaRg(o;) < ¢ ©)

S w=1 )
=1

where «a; is a share of total acres allocated to production location 7, and the CVaR in
Equation (6) is set to equal to the parameter ¢, defined as the target CVaR level. The
mean-CVaR efficient frontier can then be derived by solving the above optimization
problem for different levels of ¢. This frontier gives us the maximum portfolio return
(maximum expected profit margin) for a given level of CVaR.

2.2 Method

Calculation of CVaR requires knowledge of a cumulative distribution function of portfolio
returns, which in turn depends on the joint distribution of returns of all assets included
in the portfolio. A traditional approach relies on the use of a multivariate normal
distribution (Markowitz, 1952). However, the assumption of normality for agricultural
prices and yields has shown to be inconsistent (Goodwin and Ker, 2002; Ramirez et al,
2003). Copulas are an alternative method of modeling joint distributions that has been
gaining popularity in financial literature including portfolio analysis (Clemen and Reilly,
1999; Bouyé et al, 2001; Hennessy and Lapan, 2002; Alexander ef al., 2006, 2007; Bai and
Sun, 2007). The main advantage of the copula approach is that it allows us to specify the
marginal distributions of prices and yields (as well as profitability measures) and their
dependence structure separately. Even though the copula approach has been used in
finance for quite some time, its applications in the agricultural literature are recent (see,
e.g. Vedenov, 2008; Zhu et al,, 2008; Power et al., 2009; Larsen et al.,, 2013). This study uses
the copula-based Monte Carlo simulation to simulate the distributions of the producer’s
profit margins and compute the corresponding value of CVaR.

The copula-based Monte Carlo simulation method can be briefly summarized in
three steps. In the first step, we construct a joint distribution of variables of interest
(i.e. profit margins). According to Sklar’s (1959) theorem, the joint distribution Flxy, ..., x,,)
can be represented as:

Fn, ..., 2) = CF1(x1), ..., Fa(x)) ®)

where C: [0, 1[0, 1] is a unique copula function and F(x,) are marginal distributions of
variables of interest. This implies that the unknown joint distribution can be constructed
by estimating the marginal distribution functions from the historical profit margin data



and selecting a parametric functional form of the copula. In this study, we use kernel
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smoothing transformation to estimate the marginal density functions of historical profit - Jiversification

margins (cf. Goodwin and Ker, 1998; Vedenov, 2008; Power ef al, 2009). Regarding the
form of copula function, we are looking for the copula that covers lower tail dependence.
Possible candidates include Clayton, Rotated Gumbel, and Student’s 7 The most
appropriate copula function is selected based on the three information selection criteria:
the Akaike Information Criterion (AIC), Hannan-Quinn Information Criterion (HQIC), and
Schwarz Information Criterion (SIC). The definitions of the copula functions considered in
this study are given in Table I. For comparison, the multivariate normal distribution is
also used in the calculation of CVaR.

The selected copula is then combined with a kernel density estimate of marginal
distributions of farm-level profit margins to construct the joint distribution of profit
margins. In this study, copula parameters are estimated through maximum likelihood
estimation method:

T
0 = argmaxy > nc(Fyte), ..o Fulon)s0) ©

t=1

where 0 is the copula parameter, ¢(-) is a copula density, and F;(x;) are the estimated
marginal distributions. A more complete overview of copula functions, properties and
their applications can be found in Joe (1997), Embrechts et al. (2003), Cherubini et al
(2004), Patton (2004), McNeil et al. (2005) and Nelsen (2006).

In the second step, a series of Monte Carlo draws of the z-tuples (x, .. ., z,,) are generated
as follows. First, a random number vector (¢, ..., #,), whose marginal distribution follow
a uniform distribution, is generated from a chosen copula function Cluy, ..., u,,). Second,
the random number vector (m, ..., m,) are then obtained by inversely transforming the

marginal distribution F; of a variable #; ie, (71, ..., m,;) = (F fl(ul), cn I 1(un)).

In the final step, using the simulated realizations of profit margin for each location, the
mean-CVaR efficient frontier is estimated by solving the above optimization problem.

3. Data

To analyze the effectiveness of geographical diversification as a risk management
strategy, this research is focussed on the specialized production of winter and spring
wheat in three separate production locations (i.e. # = 3): the combination of winter and
spring wheat provides an efficient way to maximize machinery and planting/harvesting
windows based on traditional planting and harvesting windows in three regions. Smith
County, Kansas; Bottineau County, North Dakota; and Moore County, Texas. The three

Copula function Definition

Clayton Clur, ..., us|0) = i, wi—(n—1)) 0 ith 0 < 0 < 0

Rotated Gumbel Clur, ..., uy|0) = exp {(— Y (—log (l—u]’)0>>1/9:| with 1<6 <
Student’s ¢ Clur, ..., un|v,P) = t,p(t; 1), ..., £, (un))

Notes: £, is the standard Student’s ¢ distribution with degree of freedom v and ¢, p is the CDF of a
multivariate Student’s ¢ vector of dimension 7 with degree of freedom v and correlation matrix P
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Figure 1.
Historical farm-level
profit margins in
Kansas, North
Dakota, and Texas

geographically distinct areas are chosen based on harvesting windows and distance
criteria. The three locations have at least partial overlap in harvesting windows,
which allows for machinery sharing (Wolfley, 2008). Accordingly, the costs involved
with geographical diversification may be reduced or even eliminated when machinery
sharing is possible. Generally in this paper, the state names are used to refer to the
farm locations.

Farm level data were gathered from the North Dakota Farm Business Management
Association, Kansas Farm Business Management Association, and Texas A&M
Extension service. Farm level data covers the period from 2003 to 2012. Annual data for
state-level prices were collected from the National Agricultural Statistics Service, and
annual data for region-level production operating costs per planted acre are collected
from United States Department of Agriculture. The operating cost data covers the
period from 1975 to 2013. These data are used because they are the most consistent
available data for each farm location. The operating costs include seed, fertilizer,
chemicals, custom operations, fuel, lube, electricity, repairs, labor, general farm overhead,
taxes, insurance, other variable expenses, and interest on operating inputs. The historical
yields, prices and operating costs are used to calculate the profit margin for each location.
For the purpose of this analysis, any forms of government payments are not considered
in the calculation of profit margins. Figure 1 illustrates historical farm-level profit
margins in each location. The profit margins in Kansas appear to be the most stable but
in most years, the profit margin in at least one location moves in the opposite direction to
that in the other locations. For example, the profit margins in North Dakota fell sharply
from the year 2003 to 2005. However, Kansas’s and Texas’s profit margins during that
same time period either remained stable or increased. This suggests that geographical
diversification may be a viable risk management strategy for wheat producers.

Table II reports summary statistics on profit margins. Texas has the highest
average profit margin (0.63), whereas North Dakota has the lowest average profit
margin (0.57). Conversely, North Dakota has the widest range of profit margins,
ranging from 0.29 to 0.83, while Kansas’s profit margins range from 0.46 to 0.69.
The highest profit margin for Texas is 0.84 and the lowest is 0.40. The minimum and
maximum margins for North Dakota and Texas reveal that both locations have the
potential for high profitability but also the potential for extremely low profitability.
Kansas, on the other hand, does not display extremely high or extremely low profit

0.9 1
0.8 +
0.7
0.6 1
0.5 1
0.4 -

Farm-Level Profit Margin

0.3 A

0.2 T T T T T T T T )
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Year
—8— Kansas —— North Dakota —&— Texas




margins. As expected, North Dakota displays the highest standard deviation whereas
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Kansas exhibits the lowest standard deviation. Thus, from both North Dakota and Jijversification

Texas perspective, locating production in Kansas could provide some risk reduction
based solely on the visual inspection of the summary statistics.

Included in the summary statistics (Table II) is the diagnostic analysis for annual profit
margins. Regarding the higher moments of the data, Kansas has the lowest absolute value
of skewness and the lowest kurtosis, while North Dakota has the highest absolute value
skewness and the lowest kurtosis. A normal distribution has skewness of 0 and kurtosis
of 3. Kansas and Texas have considerably higher skewness (in absolute term) and lower
kurtosis than the normal distribution, suggesting that the distributions of their profit
margins are asymmetric, and non-normal. The normality tests (Shapiro-Wilk tests) fails to
reject the hypothesis that the data are not normally distributed. Testing the farm level
data are problematic based on the low sample size. The skewness and kurtosis values
indicate the existence of heavy tails which justifies the additional effort of using copulas
to model the joint distribution of profit margins from the three locations. Further, the
Ljung-Box tests (@-statistics) show that there is no serial correlation in all series.
Moreover, both the Q% and Lagrange Multiplier statistics for the ARCH effects
display no autocorrelations in the squared returns for all series, implying that
heteroskedasticity is not present in profit margin series. This indicates that the
observations are approximately independent and identically distributed. In addition,
the augmented Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests show
that all series are stationary, suggesting that their mean and covariance do not
change over time. Accordingly, the marginal distribution function for each location
can be estimated directly from the historical profit margin data.

To investigate the comovement of profit margins for each location pair, we first
calculate Pearson’s correlation coefficient, Spearman’s rho coefficient, and Kendall’s tau
coefficient. These are the three most commonly used measure of degree of dependence.
The results are presented in Table III. The Pearson’s correlation coefficients range from
—0.076 (Kansas and Texas) to 0.55 (North Dakota and Texas). The Spearman’s rho
coefficients range from —0.05 (Kansas and Texas) to 0.49 (North Dakota and Texas).
The Kendall’s tau coefficients range from —0.007 (Kansas and Texas) to 0.33 (North
Dakota and Texas). The differing degrees of dependence suggests that geographical
diversification across different production locations may significantly benefit producers in
enhancing farm’s profitability with lower downside risk. Results of detailed analysis on
geographical diversification benefits follow.

Kansas North Dakota Texas
Mean 0.5833 0.5740 0.6334
Maximum 0.6882 0.8289 0.8353
Minimum 0.4569 0.2926 0.3977
SD 0.0799 0.1415 0.1359
Skewness —0.4059 —0.1143 —0.2893
Kurtosis 1.8580 34037 20598
SW test 09111 0.9057 0.9567
p-value 0.2885 0.2139 0.7482

Notes: SW test is a Shapiro-Wilk test for normality
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4. Results

75,3 We now apply our model and method to our data set. The results of the producer’s
portfolio-optimization problem are provided in this section. We first present the copula
selection results. We then discuss mean-CVaR optimization and optimal portfolio
allocation results.

376 4.1 Copula selection results
To prepare for copula modeling, we first estimate the marginal density functions of historical
profit margins of the three locations using kernel density estimation. These estimated
marginal distributions are then used in the estimation of the copula functions.

Table IV presents the goodness-of-fit statistics. As mentioned above, we use AIC,
HQIC and SIC to select the most appropriate copula model. Based on the three criteria,
Clayton copula is found to be the best copula model, followed by Rotated Gumbel and
Student’s ¢ copulas. Accordingly, the copula function we use is the multivariate Clayton
copula. The estimated value of Clayton copula parameter, 8, is 0.281. We then apply the
copula-based Monte Carlo simulation method, and obtain 1,000 simulations of profit
margins for each location from the Clayton copula. For comparison, the traditional
multivariate normal distribution is also used to generate another set of data using the Monte
Carlo simulation. In this case, the profit margins are assumed to follow a multivariate

Kansas North Dakota Texas
Pearson’s correlation coefficient
Kansas 1.0000 0.4123 —0.0765
North Dakota 1.0000 0.5515

g? ;lei IOIfI' Texas 1.0000

dependence of Spearman’s p

farm-level profit Kansas 1.0000 0.3697 —0.0545

margms across North Dakota 1.0000 0.4909

locations (measured  Texag 1.0000

by pearson’s

correlation Kendall’s

coefficient, Kansas 1.0000 0.2444 —0.0667

Spearman’s rho, North Dakota 1.0000 0.3333

and Kendall’s © Texas 1.0000
Copula function AIC HQIC SIC
Clayton —1.5355 0.1021 —0.9528
Rotated Gumbel —1.4577 0.1799 -0.8751
Student’s ¢ 0.0237 3.2988 1.1890

Table IV.
Copula goodness-
offit statistics

Notes: The best-fit model is the one with the minimum AIC, HQIC and SIC values. AIC, Akaike
Information Criterion: AIC = ((27)/ (Tfkfl))k72ln(LL); HQIC, Hannan-Quinn Information
Criterion: HQIC = 2In(In(7))k—2In(LL); and SIC, Schwarz Information Criterion: SIC = In(T)k—2In(LL),
where T is the number of observations, % is the number of copula parameters estimated, and LL is the
value of maximum likelihood




normal distribution (Le. individual profit margin distributions and their dependence are
assumed normal). The two sets of simulated data (generated from the Clayton copula and
multivariate normal) are used for the following geographical diversification analysis.

4.2 Mean-CVaR optimization results

We maximize the producer’s portfolio value subject to the CVaR constraint. Table V
presents examples of optimal portfolios (portfolios on the mean-CVaR efficient
frontiers) at different confidence levels (90, 95, and 99 percent) for the copula-based and
traditional multivariate-normal portfolios. By definition, the reported values of CVaR
indicate the magnitude of losses, so the negative values imply the magnitude of gains.
For instance, 95 percent CVaR of 0.10 indicates that the average profit margin in the
worst 5 percent of the cases is 10 percent, whereas 95 percent CVaR of —0.10 reveals
that the average profit margin in the worst 5 percent of the cases is 10 percent.
To compare the values of CVaR under different distribution assumptions, the portfolios,
for each level of confidence, are chosen such that they have the same expected profit
margins. For all confidence levels, the copula-based portfolio yields considerably higher
value of CVaR than the multivariate-normal portfolio. Overall, Table V suggests that if
the data are correctly described by the Clayton copula, the producer will underestimate
the minimum level of downside risk (measured by CVaR) for a given level of expected
profit margin. The underestimation of risk under the assumption of multivariate normal
distribution is clearly shown in Figure 2.

Figure 2 depicts the mean-CVaR efficient frontiers for the 95 percent confidence level
for the copula-based and traditional multivariate-normal portfolios. The Clayton copula
accounts for lower tail dependence, whereas the multivariate normal distribution
assumes that the coefficient of the lower tail dependence is zero. As can be seen from
the figure, the copula-based frontier lies greatly below the multivariate-normal frontier.
This indicates that the copula-based frontier accounts for the downside risk more than
the multivariate-normal one. In other words, the multivariate-normal portfolio seems to
underestimate the CVaR for a given level of expected profit margin compared with the
copula-based portfolio. This occurs because the multivariate-normal model ignores
the comovement in the lower tail of the joint distribution. When lower tail dependence
is present, the downside risk should be expected to be higher. Hence, relying on the
traditional multivariate normal assumption may be considered a less conservative
portfolio-optimization approach and thus appears inappropriate for the producers who
are concerned with the extreme losses of farm profitability.

The efficient frontiers in Figure 3 demonstrate how reduction in downside risk is
made possible by geographical diversification. The figure shows where the specific
production locations (Kansas, North Dakota and Texas) located relative to the frontiers.

90% 95% 99%
Expected profit Expected profit Expected profit
margin CVaR margin CVaR margin CVaR
Clayton copula 0.609 —0.414 0.608 —0.383 0.615 —0.294
Multivariate
normal 0.609 -0.476 0.608 —0.454 0.615 —0.386

Notes: The Conditional Value-at-Risk (CVaR) is reported as the magnitude of losses. This negative
value of CVaR indicates the magnitude of gains
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Figure 2.
Mean-CVaR efficient
frontiers at

95 percent
confidence level

for copula-based
and tradition
multivariate-normal
portfolios

Figure 3.
Mean-CVaR efficient
frontiers at

95 percent
confidence levels
for copula-based
portfolio and single
portfolios
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For producers currently operating in Kansas and North Dakota, geographical
diversification will enhance their profitability because both locations are located below
the frontiers. The only location that is on the frontiers is Texas. Thus, at the particular
level of downside risk faced by the producers in Texas, geographical diversification
ility. However, Texas is located at the top right of the



curves and thus producers in Texas face the maximum CVaR. Given the shape of the
frontiers, the benefits for producers in Texas from reducing farm profitability a little
bit through diversification (moving down the curve) are relatively large in terms of
downside risk reduction. Specifically, based on the copula-based frontier, wheat
producers in Texas can increase their average profit margin in the worst 5 percent of
the cases from —21.6 to 25.3 percent by allocating part of total production (about
15 percent) to Kansas. This requires reducing their expected profit margins from 63.22
to 62.50 percent (a reduction of just 0.72-percentage points, comparing to a downside
risk reduction of 3.7 percentage points). This result is not surprising because the
average historical profit margin in Kansas is 5.01 lower than that of Texas, whereas the
standard deviation of historical profit margins in Kansas is 5.60-percentage points
lower than that in Texas. Thus, the benefit from risk reduction is larger than the loss in
the expected return. However, it should be noted that the rates of risk-return trade-offs
are not constant along the frontiers. Unlike at the high levels of expected profit margin,
at the low levels of expected profit margin (at the seemingly vertical part of the curves),
producers can increase their expected profit margin without facing much higher level
of risk through production reallocation (i.e. by reducing production share allocated to
North Dakota and increasing shares allocated to Texas and Kansas). This is not
unexpected because even though standard deviation of historical profit margins in
Texas is lower than that of North Dakota, it is higher than that of Kansas (while
historical average profit margin in North Dakota is lower than that of Texas and
Kansas). In fact, the benefits from producing in North Dakota come almost entirely
from the low correlations of profit margins across locations. Therefore, the benefits
from moving part of production away from North Dakota to Texas and Kansas are
relatively large in terms of the increased expected profits. In the next section, we
discuss these portfolio optimization results in terms of the optimal share of acreage
allocation among the three specific production areas.

4.3 Optimal portfolio allocation results

We now analyze the optimal percentage of acreage allocation among the three production
locations. Figures 4 and 5 illustrate the efficient allocations corresponding to different
points of the mean-CVaR efficient frontiers (for 95 and 99 percent confidence levels) for
the copula-based and traditional multivariate-normal portfolios. As expected, the optimal
share allocated to each location differs based on the expected profit margin (and risk).
In the maximum risk case, the optimal choice is to allocate the total acres to the location
with the highest expected profit margin (in this case, Texas). The minimum CVaR
portfolios involve the producers operating in all the three locations with the largest
proportion of land allocated to Kansas. At the low to intermediate levels of expected
profit margin (and risk), it is optimal to allocate more than 50 percent of total acres to
Kansas, and less than 10 percent to North Dakota. At the intermediate to high levels
of profitability, production should be operated mostly in Texas and none should be
operated in North Dakota. Comparing the results from the copula-based and traditional
multivariate-normal portfolios, the two main allocation differences occur with: first, North
Dakota share is zero for all optimal allocations and second, Kansas share of total acres
becoming the major part of the efficient portfolio allocation later for the case of
multivariate normal distribution. This is expected because, in contrast to the Clayton
copula, the multivariate normal distribution assumes zero tail dependence and thus
values less the potential risk reduction benefits from diversifying to the locations with
lower level of profitability. These results illustrate once again the impact of not accounting
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Figure 4.
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portfolios
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for the lower tail dependence. By ignoring the comovement in the lower tail of the joint
distribution, efficient allocations at the intermediate to high levels of profitability would
consist of more acreage in Texas and would not consider Kansas in reducing risk.
Nevertheless, both copula-based and traditional multivariate-normal portfolios agree that
geographical diversification seems to be an effective risk management tool for wheat
producers.

5. Conclusion

The paper presents a model for evaluating the effectiveness of a geographical
diversification in agriculture: the copula-based mean-CVaR model. The model is built
on the portfolio theory, CVaR measure, and copula approach.

Not only does the model allow for a broad range of different dependence structures and
thus allow for a more flexible joint distribution (i.e. non-normal multivariate distribution),
but it also employs CVaR, one of the recent most popular risk management criteria and the
recent most appropriate measure of downside risk, as a measure of risk. The proposed
model is then applied to the producer’s acreage allocation problem (equivalently,
portfolio-optimization problem) to examine the potential benefits of risk reduction from a
geographical diversification strategy in US wheat farming. Specifically, the portfolio
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consists of three specific production locations: Smith County, Kansas; Bottineau
County, North Dakota; and Moore County, Texas. To the best of our knowledge, this
is the first attempt to rigorously analyze whether geographical diversification is
a viable risk management strategy for wheat producers utilizing several tools from
modern finance theory.

An analysis of farm-level historical profit margins for the three production locations
shows evidence against the assumption of multivariate normality. A Clayton copula is
chosen to describe lower tail dependence of profit margins and to construct a joint
distribution of profit margins using a copula-based Monte Carlo simulation method.
For comparison, the traditional multivariate normal distribution is also used in the
construction of a joint distribution. For each distribution assumption, a producer’s
optimal portfolio (as well as the corresponding efficient frontier) is constructed by
maximizing the expected profit margin (or the weighted-average profit margin) for a
given level of CVaR. The mean-CVaR optimization results show that reduction in
downside risk is made possible for wheat producers in Kansas and North Dakota by
geographical diversification because both locations are located below the frontiers.
The only production location that gains the least from diversifying geographically is
Texas in that it is located on the efficient frontiers. However, given that Texas is located
at the most risky part of the curves, the benefits from reducing farm profitability a little
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bit through diversification are relatively large in terms of a downside risk reduction.
In terms of the optimal share of acreage allocation, the optimal share allocated to each
location differs based on the producer’s attitude toward the risk and return. Overall, both
copula-based and traditional multivariate-normal portfolios agree that a geographical
diversification strategy is a legitimate risk management strategy.

The study results also illustrate the benefits of incorporating lower tail dependence
into the construction of the joint distribution. By relying on the assumption of multivariate
normality and ignoring the existence of lower tail dependence, the producers can run the
risk of underestimating the minimum level of downside risk for a given level of expected
profit margin. Therefore, the copula-based method may be considered a more conservative
approach in analyzing the effectiveness of a geographical diversification strategy. The
implication of these results should encourage researchers to move beyond the standard
assumptions of linear correlation and normality.

Based on our farm-level copula-based Monte Carlo simulation model, geographical
diversification enhances farm profitability from a farm’s profit margin perspective.
By splitting production among the three locations, wheat producers could possibly
increase their profitability given the same level of downside risk. However, the results
of this study do not take into consideration the costs that could be incurred when
producing in more than one state. Thus, one potentially fruitful avenue of future
research would be to account for cost-related factors in geographical diversification.
Future studies can also apply the proposed model to other agricultural commodities.
These extensions would add to the current understanding of the effects of geographical
diversification in agriculture.
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